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A B S T R A C T

Due to its wide European distribution and its drought-susceptibility, beech (Fagus sylvatica L.) received

intensive attention recently in the light of global warming. Contrary to central European beech

ecosystems, little is known about the ecophysiology of beech at its south-eastern European distribution

limit. Here we tested whether climatic fluctuations during a three-year period affected the

ecophysiology of a beech site in Greece. Attention was paid at comparing our findings to the intense

effects the 2003 extreme drought had on beech forests in central Europe.

We assessed the interannual and seasonal variation of certain physiological parameters in a beech

stand of north-western Greece during three consecutive growing seasons of the period 2003–2005. Leaf

water potential and effective quantum yield of PSII were measured as well-known indicators of plant’s

responses to environmental stresses. Furthermore, plant carbon isotopic composition (d13C) of tissues

and extracts with different turnover times was determined, since it can reveal short- or long-term

environmental effects on the water and carbon balance of the plant. Moreover, a number of

micrometeorological parameters were measured and their effect on ecophysiological responses was

tested.

Precipitation of 2003 at the study site was comparable to that in central Europe, but it did not differ

from the local range of precipitation in NW-Greece. Still, 2003 was more xeric, compared to 2004 and

2005. Despite this, leaf water potential, effective quantum yield and d18O showed no significant variation

between years and their values were not indicative of plants suffering from drought stress. Foliar d13C, on

the other hand, appeared to be more sensitive to the climatic differences between the years and it was

higher during the more xeric 2003 compared to later on. Regression analysis revealed that its response

was largely controlled by current soil water content and vapour pressure deficit of the preceding month.

Regarding d13C of phloem from both twigs and trunk, their patterns were influenced only by short-term

changes in air vapour pressure deficit.

Within the climatic range recorded in this study, which is typical for beech ecosystems in Greece, no

substantial drought-driven limitations were observed on beech ecophysiology. Our observations

contradict those from central European beech sites, rarely subjected to drought, where similarly low

water availability had a great impact on the ecophysiology of beech.

� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Owing to climate change (Schär et al., 2004; IPCC, 2007) the
future survival and sustainability of European beech (Fagus

sylvatica) ecosystems in Europe has become of great concern
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(e.g. Cescatti and Piutti, 1998; Peñuelas and Boada, 2003; Geßler
et al., 2004a, 2007; Bréda et al., 2006), due to the species’ high
sensitivity to drought (Fotelli et al., 2001; Leuschner et al., 2001;
Granier et al., 2007). Since European beech is one of the widely
spread forest species in Europe (Ellenberg, 1996), any possible
adverse effects on its sustainability and regeneration may have
great ecological and economical impacts.

In the Mediterranean region, beech is limited to mountainous
areas where it could not be reached by ice during the Quaternary
period allowing, thus, its survival. Although beech populations
found close to the southern limit of the species’ distribution are
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characterized by high genetic diversity compared to northern
populations (Demesure et al., 1996; Scarascia-Mugnozza et al.,
2000), they might be quite sensitive to extreme environmental
conditions since they grow at the limit of their ecological
requirements (e.g. Jump et al., 2006a). Therefore, beech ecosystems
of the Mediterranean might be especially prone to climate change
due to the already xeric conditions of this area (e.g. Scarascia-
Mugnozza et al., 2000). A recent study of Jump et al. (2006a) reports a
rapid growth decline of beech forests in north-eastern Spain, as a
direct consequence of intense drought and warming during the last
decades. As a result, beech may be forced to shift to higher altitudes
(Peñuelas and Boada, 2003) and restrict its distribution in southern
Europe. On the other hand, beech of southern origins might respond
better to intensified drought and heat events due to a potential
acclimation to such environmental conditions (Tognetti et al., 1995;
Garcı́a-Plazaola et al., 2008). Recently, evidence is provided that
current climatic changes are resulting in genetic alterations and,
thus, adaptive responses to climate change in certain beech
populations of the Mediterranean (Jump et al., 2006b). The observed
increase in water use efficiency of lower elevation beech sites in
Spain, subjected to intense warming during the last decades
(Peñuelas et al., 2008) further emphasizes that some beech
population have the potential to respond to climate change.

Studies on the effects of drought on water relations and
photosynthetic performance of beech (e.g. Tognetti et al., 1995;
Backes and Leuscher, 2000; Fotelli et al., 2001; Leuschner et al.,
2001; Bréda et al., 2006) generally showed that although beech
possesses mechanisms for responding to water deficits, it is not a
drought-tolerant species. To date there is limited information on
the ecophysiology of beech in the typically xeric Mediterranean
ecosystems (e.g. Tognetti et al., 1995; Aranda et al., 2000, 2005;
Sabate et al., 2002; Skomarkova et al., 2006). Particularly in Greece,
the south-eastern distribution limit of beech in Europe, only few
studies focused on this species till lately (Raftoyannis and
Radoglou, 2002; Nahm et al., 2006b; Zerva et al., 2008), since
beech forests in Greece were of low economical importance, but
may reveal to be of great ecological importance. Studying the
ecophysiology of these beech ecosystems, generally characterized
by xeric conditions, may offer valuable information on the species’
potential to acclimate and adapt to climatic changes. For example,
the summer of 2003 was extremely dry and the hottest of the last
180 years in central and western Europe (Schär et al., 2004; Ciais
et al., 2005; Löw et al., 2006; Rebetez et al., 2006; Granier et al.,
2007) and led to intensified research on the physiological
responses of beech to drought (e.g. Löw et al., 2006; Geßler
et al., 2007; Granier et al., 2007; Nahm et al., 2007). However, little
is known about the ecophysiological performance of beech in
Greece during this well-studied dry year.

In this study we have measured certain physiological parameters,
indicative of the plant’s water and carbon balance, in order to assess
the performance of beech in NW-Greece under the influence of the
typical Mediterranean climate of this region. Carbon isotopic
compositions of plant tissues and extracts offer useful insights on
plants’ responses to environmental stresses, such as limited water
availability (e.g. Damesin et al., 1998; Adams and Grierson, 2001;
Fotelli et al., 2003). In C3 plants, the slower diffusion of the heavier
13C isotope, compared to 12C, from the atmosphere to the site of
carboxylation, and the strong discrimination of Rubisco against 13C,
are largely responsible for the depletion of plant material in 13C
relative to the atmosphere. The d13C composition of a plant tissue is
described by Farquhar et al. (1989) as:

d13Cplant ¼ d13Catm � a� ðb� aÞ Ci

Ca

where d13C is expressed in units of parts per thousand (%), a is the
discrimination during diffusion (�4.4%), b is the discrimination
during carboxylation by Rubisco (�29%), Ci is the CO2 concentra-
tion inside the stomatal cavities, and Ca is the atmospheric CO2

concentration.
Water deficits lead, thus, in reductions in the Ci/Ca factor and in

increases in d13C of organic matter (13C-enriched tissues).
However, structural carbon of bulk material like leaves, may carry
an isotopic signature affected by storage and remobilisation
processes (Helle and Schleser, 2004; Skomarkova et al., 2006). On
the other hand, d13C of recently fixed carbon, allocated among
others in phloem sap, is indicative of short-term environmental
fluctuations (Keitel et al., 2003; Scartazza et al., 2004). Moreover,
variations in water availability may affect the downstream
processes of carbon metabolism and 13C-isotopic signature during
allocation from leaf to stem (Damesin and Lelarge, 2003) or to root
(Keitel et al., 2003). Therefore, d13C analysis of leaves, as well as of
phloem sap, which are characterized by different turnover times
may reveal differences in the effect of environmental factors, such
as water availability (e.g. Peuke et al., 2006).

Fluorescence parameters are also well-established measures of
plants’ responses to environmental stresses. Effective quantum
yield of PSII in light-adapted leaves is a reliable indicator of
photoinhibition in plants in response to stresses (Colom and
Vazzana, 2003). Furthermore, leaf water potential is traditionally
measured for characterizing plant’s responses to drought and other
stresses, and is among the very few ones already studied in beech
native to Greece (Raftoyannis and Radoglou, 2002; Nahm et al.,
2006b), providing thus comparability to existing data.

To assess the seasonal and interannual variation of critical
physiological traits of adult beech trees in a beech forest in Greece,
carbon isotopic analysis of various plant compounds were
combined to chlorophyll fluorescence and water relations mea-
surements. We aimed at comparing the seasonal ecophysiological
performance of beech during three consecutive growing periods
from 2003 to 2005 and at studying how this performance is
affected by climatic conditions. In the light of the great impact the
2003 drought had on beech forests of central Europe, we also
focused on comparing our findings with those of studies on beech
ecosystems in central Europe, generally characterised by less xeric
summers than in Greece.

2. Materials and methods

2.1. Site description

The experimental site of this study is located in north-western
Greece, at the area of Kastaneri on Paiko mountain (longitude:
228200E; latitude 408580N), about 100 km north-northwest from
Thessaloniki. Paiko is characterized as a Site of Community
Interest, according to the 92/43 EU Regulation, due to the
particular importance of its natural resources. European beech
forms natural stands occupying the greatest part of mountain
Paiko, followed by oaks (Quercus frainetto, Quercus petraea sub.
medwediewii, Quercus pubescens), chestnut (Castanea sativa) and
eastearn hornbeam (Carpinus orientalis).

The study area is established in a pure beech stand with average
tree height 17 � 3 m and diameter at breast height 0.2 � 0.09 m. The
beech stand is 30–60 years old and is regenerated mainly with
sprouts and partly with seeds. Silviculturally it is regarded a low
quality, degraded stand and the applied thinning aims at converting it
from a sprout-origin to a productive seed-origin forest. The forest site
is located at 1140 m.a.s.l., within the submontane level of beech
distribution, which in Greece lies between 800 and 1700 m.a.s.l.
(Bergmeier and Dimopoulos, 2001).

The experimental site is characterized by moderate to steep
slope (30–80%) and is S-SW-exposed. The soil depth at field site is
40–50 cm. More than 50% of the live fine root biomass of the
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studied beech trees is developed at the upper 20 cm of the soil
(Zerva et al., 2008). The geologic substrate consists of marbles,
crystaline limestones, and clay schist; formations characterized by
great depth and high consolidation. The soil pH (H2O) is slightly
acidic (5.0 at 0.1 m depth and 4.8 at 0.3 m depth).

2.2. Environmental conditions

During the three years of study, climatic conditions of the site
were monitored by a weather station located close to the forest
edge, at ca. 10 m distance from the first (closest) studied beech
tree. Air temperature and air relative humidity (RHT2nl, Delta-T
Devices Ltd., Cambridge, UK), and photosynthetically active
radiation (SKP215; Skye Instruments Ltd., Llandrindod Wells,
UK) were measured at 1.5 m height. Moreover, precipitation (Rain
Collector II, Davis Instruments, Hayward, USA) and soil water
content at 30 cm depth (Theta Probe ML1, Delta-T Devices Ltd.,
Cambridge, UK), were recorded. A recent study showed that more
than 50% of live fine root biomass of the studied beech trees was
developed in the upper 20 cm of soil and this biomass decreased
with depth (Zerva et al., 2008). Thus, the soil water content of the
upper 30 cm of soil should be decisive for the water uptake by the
trees. All parameters were data-logged hourly (DL2e Delta-T
Logger, Delta-T Devices Ltd., Cambridge, UK).

In order to characterize the climatic conditions of the three
years of study, air temperature and precipitation data have
additionally been obtained by the following meteorological
stations established at forest sites of N-NW Greece: Loutra
Thermis, Chrisopigi and Paggaio. The climate diagrams of these
stations are presented in Fig. 1.

Stand evaporation, transpiration and evapotranspiration of the
studied site were calculated with the water balance model WBS3, a
forest-hydrological model that requires daily mean value of air
temperature and daily total precipitation as meteorological inputs
(Schmidt, 1990; Matzarakis et al., 2000). Time-independent input
variables of the WBS3-simulations are: basal area of the stand,
mixing ratio of deciduous trees, mixing ratio of coniferous trees,
type of soil, plant available soil water, slope angle, slope direction
Fig. 1. Climate diagrams of the studied beech site on Paiko Mtn., as well as of additi

characterised by different elevation.
and geographical latitude. In comparison to other water balance
models, WBS3 uses a simple approach but requires less meteor-
ological parameters. For evapotranspiration, evaporation, tran-
spiration and interception of forests, validations of WBS3 showed a
good agreement between results from model calculations and
measurements for different areas and slopes (Fritsch, 1998;
Matzarakis et al., 2000; Nahm et al., 2006a) and has been applied
for such purposes in ecophysiological studies (Keitel et al., 2003,
2006; Nahm et al., 2006a).

2.3. Measurement campaigns

Eight non-neighboring adult beech trees of the experimental
area, distanced at least 10 m from each other, were selected for
measurements and sampling, according to their height (Vertex III
Hypsometer; Haglof Inca., Madison, USA) and diameter at breast
height (DBH). The studied trees were chosen as representative of
the forest stand, covering the entire range of height (10–22 m) and
DBH (9–51 cm).

Field measurements of effective quantum yield of PSII and leaf
water potential were conducted once per month during the
growing season. Collection of plant material was performed three
times per growing season, between 09:00 h and 11:00 h: in May (at
the beginning of the growing season), in July (mid-summer) and in
September (at the end of the growing season). The plant material
sampled consisted of leaves and phloem exudates derived both
from twigs and the tree trunk.

2.4. Collection of phloem sap from twigs and the trunk

For phloem exudation from the twigs, a bark piece of
approximately 300 mg fresh weight was removed from the cut
end of one twig per studied tree (Nahm et al., 2006a,b). Small
pieces of bark of the same fresh weight were removed from the
trunk of each tree at breast height with a corer and used for phloem
exudation (Geßler et al., 2004b; Keitel et al., 2006).

All bark samples were washed with double-distilled water in
order to exclude contamination of phloem exudates with xylem
onal three forest sites of N-NW Greece (Loutra Thermis, Chrisopigi and Paggaio),
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sap. Subsequently, in 2003 phloem exudation was conducted with
the EDTA-technique described by Rennenberg et al. (1996) and
Schneider et al. (1996). The bark pieces were incubated in 6-ml
vials with 2 ml exudation solution consisting of 10 mM EDTA and
0.015 mM chloramphenicol at pH 7.0 for 5 h. In 2004 and 2005,
EDTA was replaced by Polyphosphate puffer (Sodium hexameta-
phosphate—‘‘Phosphate Glass’’) (15 mM), as it was observed that
EDTA affected the d13C signature of the exudates. To overcome this
problem, d13C of EDTA was measured and the d13C signatures of
phloem exudates from 2003 were corrected accordingly.

Phloem exudates were finally frozen in liquid N2 and stored at
�80 8C until analysis. Previous studies (Schneider et al., 1996)
showed that contamination of phloem exudates with cellular
constituents is negligible under the experimental conditions
applied.

In Pinus sylvestris Brandes et al. (2006) observed no intracanopy
gradient of d13C in twigs. It can, therefore, be assumed that twig
sampling in the present study was representative of the tree
canopy.

2.5. Determination of tissues C isotopic composition

Leaf material was ground with mortar and pestle into a
homogenous fine powder and then oven-dried (3 days, 65 8C).
Samples of 0.5–1.0 mg were transferred into tin capsules (IVA
Analysentechnik, Meerbusch, Germany) and then injected into an
elemental analyser (NA 2500; CE Instruments, Milan, Italy)
coupled to an isotope ratio mass spectrometer (Delta Plus;
Finnigan MAT GmbH, Bremen, Germany) by a Conflo II interface
(Finnigan MAT GmbH, Bremen, Germany).

For d13C analysis in the phloem exudates, 100 ml were injected
into tin capsules and left to dry for 24 h at 65 8C. This procedure
was followed twice before the tin capsules were closed and
injected into the elemental analyzer—isotope ratio mass spectro-
meter system. The d13C values were expressed as: d13C
(%) = [(Rsample/RVPDB) � 1] � 1000, where Rsample and RVPDB are
the 13C/12C ratios of sample and VPDB (Vienna Pee Dee Belemnite)
standard, respectively.

2.6. Determination of effective quantum yield of PSII and

leaf water potential

Effective quantum yield was recorded on a monthly basis on
seven of the selected beech trees between 10:00 h and 12:00 h.
Measurements of the effective quantum yield of PSII were
performed on six leaves per tree. The saturation pulse method
associated with the pulse-amplitude-modulation technique was
applied for fluorescence measurements using a MINI-PAM
fluorometer (Heinz Walz, Elleltrich, Germany). The tip of the
fiberoptics was located 0.01 m from and 608 to the leaf surface. The
effective quantum yield of PSII was calculated as
DF=F 0m ¼ ðF

0
m � FÞ=F 0m, where F and F 0m are the fluorescence yields

before and after the saturation pulse is applied on the leaf,
respectively. Effective quantum yield was measured on fully
expanded southeast-exposed leaves at the same layer in the lower
sunlit crown. Measurements were conducted on leaves of
peripheral twigs, being under steady-state at a light intensity
range of 150–300 mmol m�2 s�1. According to Kreuzwieser et al.
(1997) this light intensity enables photosynthesis in the shade-
tolerant beech to proceed to ca. 70–100% of the rate at light
saturation, which occurs at PAR values around 300 mmol m�2 s�1.

Leaf (xylem) water potential (C) was determined on three fully
expanded leaves of the twig harvested for phloem sampling, from
eight adult beech trees, according to Scholander et al. (1965) using
a pressure chamber (Wescor Inc., Logan, UH, USA). Leaf water
potential measurements were conducted between 09:00 h and
10:00 h, directly after leaf harvest, given that technical difficulties
did not allow pre-dawn measurements.

2.7. Data analysis

Statistical analysis was performed using SPSS 12.0 (SPSS, Inc.,
Chicago, IL, USA). For all parameters, statistically significant
differences between and within the three measuring years were
assessed by applying Univariate Analysis of Variance, after data has
been tested for normal distribution. Homogenous groups were
detected with a Duncan post hoc test at a 95% level of significance.
Regression models between physiological parameters, as well as
between physiological and environmental parameters were built
with the stepwise procedure which removes from the model any
entered parameter with p > 0.05. Water potential, effective
quantum yield of PSII and carbon and oxygen isotopic composi-
tions were tested as dependent variables. The respective environ-
mental parameters were rainfall, air relative humidity, air vapour
pressure deficit, mean, maximum and minimum air temperature,
and soil water content averaged over (a) the respective months the
dependent variable was measured, (b) the preceding month and (c)
five days prior to measurement.

3. Results

3.1. Climatic characterization of the studied years

The studied beech site is characterized by a relatively dry
season in July and August, as indicated by the climate diagram of
the area (Fig. 1). Cumulative climatic parameters during the
growing season, which are of particular biological importance for
plants’ growth and survival, were calculated for the three years of
study (Fig. 2). Cumulative air temperature, stand evapotranspira-
tion and maximum evaporation were the highest in 2003
compared to the other years, while cumulative precipitation of
2003 was comparable to that of 2005 but lower than in 2004
(Fig. 2). When averaged over the growing season, 2003 was
characterized by the highest air temperature, stand transpiration,
evapotranspiration and maximum evaporation, compared to next
years (Table 1). Although precipitation of the 2003 growing season
was not lower than that of 2005, the soil water content of 2003 was
the lowest of all years, probably because of the high temperature
and evapotranspiration during this year (Table 1). Similar air
temperature and precipitation patterns during the three study
years were also observed in three sites of N-NW Greece (Table 1).
In combination the above-mentioned meteorological recordings
indicate that the growing season of 2003 was more xeric compared
to that of 2004 and 2005.

Particularly regarding the growing season of 2003, Table 2
shows that air temperature of the studied beech site in Greece was
higher than that of beech sites from central Europe. Furthermore,
despite the higher elevation of our beech site, compared to central
European sites, precipitation on Paiko Mtn. fell within the range
recorded along this European transect. Therefore, the summer of
2003 was climatically similar in NW-Greece and in central Europe
(Table 2).

3.2. Leaf water potential and effective quantum yield of PSII

In general, leaf water potential followed a similar seasonal
trend during all years and no significant differences were detected
between the years (Fig. 3a). The highest values were measured at
the beginning of the growing season, followed by a sharp decrease
in June. Thereafter, leaf water potential increased again and
presented some smaller fluctuations and gradually declined
towards the end of the growing season. Regression analysis



Fig. 2. Seasonal accumulation of mean daily air temperature (Ta), evaporation (E), precipitation (P) and maximum evaporation (Emax) during the growing season (May to

October) of 2003, 2004 and 2005 in the study site on Paiko Mtn.

Table 1
Comparison of climatic parameters between the growing seasons (May to October) of the years 2003, 2004 and 2005. Data were obtained from meteorological stations of the

study site (Paiko Mtn.) and of other three sites of N-NW Greece.

Elevation

[m.a.s.l.]

Latitude Longitude Year Precipitation

[mm]

Air temperature

[8C]

Accumulated air

temperature [8C]

Evapotranspiration

[mm]

Maximum

evaporation

[mm]

Soil water

content [%]

Paiko 1140 408580 228200 2003 406 16.9 3107 347 430 21.6

2004 520 15.6 2872 310 393 24.2

2005 365 15.7 2858 314 394 22.4

Loutra Thermis 30 408300 238040 2003 291 22.5

2004 269 21.6

2005 296 21.8

Chrisopigi 650 418100 238340 2003 314 19.2

2004 378 18.5

2005 310 18.9

Paggaio 1310 408500 238120 2003 403 15.1

2004 403 13.9

2005 565 13.1

All values shown are averages of mean daily values, except for accumulation of air temperature which represents the sum of mean daily air temperature and precipitation that

represents the sum of daily totals. Stand evaporation and evapotranspiration of the study area (Paiko Mtn.) were calculated by means of the WBS3 water balance model

(Matzarakis et al., 2000; for details see Section 2).
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revealed that seasonal variation in leaf water potential was solely
controlled by the respective variation in soil water content
(R2 = 0.92, p < 0.001; Fig. 4a), since no significant regression model
could be built with any of the other environmental or physiological
parameters, or with combinations between them, tested as
determinants.

The seasonal variation and gradual decline of leaf water
potential was not mirrored in effective quantum yield of PSII,
which remained quite more stable and was only slightly lowered in
September and October (Fig. 3b).
Table 2
Comparison of air temperature and precipitation during the growing season (May to Oc

Parameter Paiko Greece Freising

Germany

Freiburg

Germany

Altitude [m] 1140 485 270

Precipitation [mm] 406 359 374

Air temperature [8C] 16.9 16.2 -

Source or citation Present study Löw et al. (2006) Rebetez et al. (2006)

Characteristics of the climate stations in Sisteron/France, Tuttlingen/Germany, and Mü
3.2.1. Carbon isotopic composition

In beech leaves, d13C composition presented the same seasonal
pattern during all years of measurements (Table 3); d13C values
were the highest (less negative) at the beginning of the growing
season and decreased significantly thereafter. However, 2003 was
characterized by more 13C-enriched leaves throughout the
growing season, compared to 2004 and 2005.

In 2004 and 2005, the d13C composition of phloem from twigs
and the trunk presented no significant variation during the
growing season (Table 3). In 2003, d13C was the lowest in May and
tober) 2003 between the study area and different beech forests of Central Europe.

Sisteron France Tuttlingen Germany Mühlhausen

Germany
NE SW

1200 750 400

266 391 452 260

14.9 14.8 14.7 14.9

Météo France (St. Auban) Deutscher Wetter Dienst

hlhausen/Germany are given by Nahm et al. (2007).



Fig. 3. Seasonal variation of (a) leaf water potential and (b) effective quantum yield

of PSII during the growing season of 2003, 2004 and 2005. Both parameters were

measured once per month; leaf water potential from May till September and

effective quantum yield from June till October. All values shown are means (�SE) of

eight beech trees. Statistically significant differences between the three years and

within each year between the different months are indicated with upper and lower

case letters, respectively. In the case of absence of significant differences no symbol is

used. Means that are different at a 95% level of significance share no common letter.
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increased during the growing season. Consistent to the patterns
found for leaves, phloem from twigs and the trunk was
significantly more 13C-enriched in July and September 2003,
compared to 2004 and 2005.

Regression analysis showed that the seasonal variation of foliar
d13C was largely explained by the combined effect of soil water
content of the current month and air vapour pressure deficit of the
preceding month (R2 = 0.85, p < 0.001; Fig. 4b). Among all climatic
parameters, both twig and trunk phloem d13C were solely
controlled by air vapor pressure deficit of the five days prior to
plant sampling (R2 = 0.58, p = 0.011; Fig. 4c and R2 = 0.50, p = 0.02;
Fig. 4d, respectively).

4. Discussion

The 2003 growing season was more xeric compared to the
following two years, but it fell within the climatic range of the typical
relatively warm and dry summers in Greece. Moreover, this growing
period was warmer and with similar water availability in our site on
Paiko Mtn. as in some studied beech sites of central Europe.

Contrary to effective quantum yield of PSII which presented a
rather stable seasonal course, leaf water potential exhibited some
seasonal variation, which was uniform in all studied years.
Effective quantum yield might be less responsive to the environ-
mental fluctuations of Mediterranean sites, thanks to biochemical
mechanisms assigned to avoid any actual photoinhibition effect
(Mulkey and Pearcy, 1992). Consistent to this, even during the
more xeric 2003 effective quantum yield remained high (ca. 0.75),
at a range comparable to that measured on young beech seedlings
at the absence of photoinhibition (Tognetti et al., 1998).

Furthermore, the warmer and drier 2003 did not result in
differences in the leaf water potential of beech, relative to the other
years. However, the fact that water potential was not measured at
pre-dawn may have dampened some effects. During the excep-
tionally dry summer of 1998, Raftoyannis and Radoglou (2002)
reported substantially lower values of beech leaf water potential,
also measured between 10:00 a.m. and 12:00 p.m., which
fluctuated between �2MPa and �4MPa. It can, thus, be supported
that the studied beech trees maintained a favorable water status
through the entire study period, despite the differences in climatic
traits between the years. Contrary to our findings, studies in central
European beech sites reported decreases of gas exchange and
electron transport rate (Löw et al., 2006) and lower pre-dawn
water potentials (Leuzinger et al., 2005) during the summer of
2003, when compared to the wetter 2004.

The seasonal fluctuation of foliar d13C was similar during all three
years of measurements: foliar d13C was high at the beginning of the
growing season and decreased thereafter, possibly due to the effect
of stored, isotopically heavy carbohydrates remobilisation that are
deposited to new tissues, as similarly reported by Skomarkova et al.
(2006) for d13C in tree-rings of beech. Moreover, Holtum and Winter
(2005) found that d13C of juvenile leaves are on average 1.5% less
negative than that of mature leaves. The same seasonal, not-
climatically driven, pattern of foliar d13C was reported in adult beech
trees along a European gradient by Nahm et al. (2007).

The climatic difference between the years seems to be
imprinted in foliar d13C, which was higher during the more xeric
2003, compared to the following growing seasons. 13C-enriched
whole leaf dry matter is indicative of higher water use efficiency
(e.g. Farquhar et al., 1989; Adams and Grierson, 2001) along the
vegetation period 2003. Peñuelas et al. (2008) reported increased
water use efficiency only in certain low elevation beech popula-
tions of Spain, under the pressure of warming. They suggest that
some of the south European beech populations have the potential
to genetically adapt to climate changes that threaten their
distribution. In our study, the lower soil water content and higher
air temperature during 2003, compared to next years, explain the
need for higher water use efficiency and the effect of mean soil
water content and vapour pressure deficit over foliar d13C. Fotelli
et al. (2003) and Keitel et al. (2006) also reported foliar d13C being
correlated to a number of climatic parameters in beech studied
along a range of environmental regimes.

Consistent to foliar d13C, phloem exudates from both twigs and
the trunk were 13C-enriched in July and September of the drier and
warmer 2003, compared to next years. Pate and Arthur (1998) and
Peuke et al. (2006) similarly reported 13C-enrichment of phloem
extracts from eucalypt and beech, respectively, due to drought.
Overall the response of phloem d13C was affected only by short-
term changes in air vapor pressure deficit during the preceding five
days. Keitel et al. (2003, 2006) also observed that phloem d13C was
indicative only of short-term variations in micrometeorological
parameters. Although short-term regulated, phloem d13C was
generally affected by the drier and warmer conditions of 2003,
apparently also characterized by higher air vapor pressure deficits.

In conclusion, during the summer of the relatively xeric 2003
the climatic conditions of the beech forest on Paiko Mtn., NW-
Greece, were comparable to those of central European beech sites.
However, comparison with long-term climatic records, and current
measurements of physiological parameters revealed that beech of
NW-Greece experienced only a mild drought stress in 2003, but no
such stress in the next two years. In contrast, severe drought effects
have been reported for beech of central Europe during the heat of
2003 (Leuzinger et al., 2005; Löw et al., 2006). Thus, similar



Fig. 4. Regression models describing the relationships between (a) foliar d13C and the combined effect of soil water content of the current month and air vapour pressure

deficit of the preceding month of measurements, (b) leaf water potential and soil water content of the current month of measurements, (c) twig phloem d13C and air vapor

pressure deficit of the preceding five days, and (d) trunk phloem d13C and air vapor pressure deficit of the preceding five days.

Table 3
Seasonal and interannual variation in d13C abundance of leaves and phloem

exudates from twigs and from the trunk in adult trees of the studied beech forest on

Paiko Mtn., NW-Greece.

2003 2004 2005

Leaves

May �26.25 � 0.4 A a �28.64 � 0.3 B a �28.28 � 0.4 B a

July �28.32 � 0.5 A b �29.73 � 0.3 B b �29.77 � 0.7 B b

September �29.25 � 0.4 A b �29.66 � 0.5 AB b �30.38 � 0.4 B b

Phloem twigs

May �28.86 � 0.3 A b �28.55 � 0.3 A a �28.42 � 0.5 A a

July �26.57 � 0.3 A a �29.00 � 0.3 B a �29.17 � 0.6 B a

September �27.05 � 0.4 A a �28.87 � 0.4 B a �28.77 � 0.5 B a

Phloem trunk

May �27.32 � 0.4A c �27.63 � 0.5A a �28.30 � 0.7A a

July �26.29 � 0.4A b �27.94 � 0.5B a �28.89 � 0.6B a

September �25.15 � 0.4A a �27.33 � 0.4B a �29.47 � 0.5C a

Upper and lower case letter refer to the comparison between years and between

months of the same year, respectively. Two means are significantly different at a

95% level of significance when they share no common letter.
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climatic conditions in central and Mediterranean Europe during
2003 determined different ecophysiological responses in beech
populations adapted to contrasting climatic regimes. This is in
agreement with the view that beech of south European origin,
which is most-threatened by shifts of its geographical range, is
capable of genetic adaptive changes in response to climate change
(Jump et al., 2006b). Our findings may reveal to be particularly
important for the ecology and management of the widely
distributed European beech, in the light of the intensified drought
events expected in Europe in the near future.
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